Fernanda Lima

Modelagem Semântica de Aplicações na WWW

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Informática da PUC-Rio.

Orientador: Daniel Schwabe

Modelagem Semântica de Aplicações na WWW

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Daniel SchwabeOrientador
PUC-Rio

Alberto H. F. Laender UFMG

Marco Antonio Casanova PUC-Rio

Marta L. Queirós Mattoso COPPE/UFRJ

Simone Diniz Junqueira Barbosa PUC-Rio

Prof. Ney Dumont
Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de março de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização do autor, do orientador e da universidade.

Fernanda Lima

Cursou Tecnólogo em Processamento de Dados na PUC-Rio em 1983. Atuou em empresas como Analista de Sistemas, Administradora de Bancos de Dados, Analista de Suporte, Programadora de 1984 a 1997. Retornou ao mundo acadêmico para realizar Mestrado em Engenharia de Sistemas e Computação na COPPE/Sistemas, UFRJ, encerrado em 1996 com publicações na área de Banco de Dados. Ministrou disciplinas relacionadas à Web em diversos cursos, inclusive no Bacharelado em Informática da PUC-Rio. Coordenou curso de Desenvolvimento de Aplicações na Web na CCE PUC-Rio. Possui interesse acadêmico e profissional nas áreas de Engenharia de Software, Orientação a Objetos e Web Semântica.

Ficha Catalográfica

Lima, Fernanda

Modelagem semântica de aplicações na WWW / Fernanda Lima; orientador: Daniel Schwabe. – Rio de Janeiro : PUC, Departamento de Informática, 2003.

128 f.: il.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática.

Inclui referências bibliográficas.

1. Informática – Teses. 2. Web semântica. 3. Projeto de aplicações web. 4. SHDM. 5. OOHDM. 6. Web. 7. World Wide Web. I. Schwabe, Daniel. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

Este trabalho é dedicado a meu marido Ortwin e meu filho Kristian, por existirem e tornarem o mundo mais belo a cada dia.

A vocês, com todo amor que houver nesta vida!

Agradecimentos

Ao meu orientador, Professor Daniel Schwabe, pelo incentivo e parceria para a realização deste trabalho, e também pelo ombro amigo em momentos difíceis.

Ao CNPq, à Capes e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos professores que participaram da Comissão examinadora. Em especial, aos meus ex-orientadores Marta Mattoso, Casanova e Daniel Schwabe, por terem servido de exemplo e inspiração para minha formação acadêmica.

A todos os professores, funcionários e alunos do Departamento de Informática pela convivência agradável de todos os dias.

Ao meus amigos e colegas do laboratório Webeng/TecWeb: Natacha, Patrícia Vilain, Mark, Condack e Guilherme pelo companheirismo de todas as horas e em especial à Adriana, pelo carinho, presença e ativa colaboração na etapa final. A todos os meus amigos e colegas da PUC-Rio. Aos meus amigos da Dataprev, que me acompanharam após a saída da empresa, em especial, à Ana Caldas, Cristina, Gabriela, Lia, Patrícia e Renato. A minha querida amiga Simone, companheira de muitas lutas e estradas semelhantes. A todos os meus outros amigos e colegas, não mencionados nominalmente aqui, mas que sempre me trataram com carinho e foram correspondidos.

As minhas queridas mãe Pilar e irmã Vera por serem exemplos de luta e fortaleza.

A meus queridos pai Hemar e irmão André pela saudade e pela presença em meu coração.

A meu amado marido Ortwin, que não só me acompanhou durante esta jornada, mas também foi fonte de perseverança, inspiração e muito amor.

A meu pequeno filho Kristian, que trouxe uma luz linda em minha vida e os momentos mais felizes que já vivi.

Resumo

Lima, Fernanda. **Modelagem Semântica de Aplicações na WWW.** Rio de Janeiro, 2003. 128p. Tese de Doutorado - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho apresenta um modelo para projeto e implementação de aplicações hipermídia no contexto da Web semântica. A partir dos princípios do "Object Oriented Hypermedia Design Method", utilizamos as noções de ontologias para definir o modelo conceitual de uma aplicação, estendendo o poder expressivo daquele método. Os modelos de navegação são definidos utilizando-se uma linguagem de consulta que permite referências tanto ao esquema de dados quanto às suas instâncias, possibilitando a definição de estruturas de navegação flexíveis e abrangentes. Adicionalmente, propomos a utilização de estruturas de acesso facetadas para o apoio à escolha de objetos de navegação utilizando múltiplos critérios. Finalmente, apresentamos uma arquitetura de implementação que permite a utilização direta da especificação da aplicação na derivação da implementação da aplicação final.

Palayras-chave

Web Semântica, Projeto de Aplicações Web, SHDM, OOHDM, Web, WWW.

Abstract

Lima, Fernanda. **Modelagem Semântica de Aplicações na WWW.** Rio de Janeiro, 2003. 128p. Tese de Doutorado - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

In this thesis we present a method for the design and implementation of web applications for the Semantic Web. Based on the "Object Oriented Hypermedia Design Method" approach, we used ontology concepts to define an application conceptual model, extending the expressive power of the original method. The navigational models definitions use a query language capable of querying both schema and instances, enabling the specification of flexible access structures. Additionally, we propose the use of faceted access structures to improve the selection of navigational objects organized by multiple criteria. Finally, we present an implementation architecture that allows the direct use of the application specifications when deriving a final application implementation.

Keywords

Semantic Web, Web Application Design, SHDM, OOHDM, Web, WWW.

Sumário

1 Introdução	15
1.1. A Web Atual	17
1.2. A Web Semântica	18
1.3. Contribuições	19
1.4. Estrutura da Tese	20
2 Fundamentos	22
2.1. Ontologias	22
2.2. Linguagens para Especificação de Ontologias	23
2.2.1. XML	25
2.2.2. XML Schema	25
2.2.3. RDF e RDF(S)	26
2.2.4. DAML+OIL	30
2.2.5. Comparação	34
2.3. Linguagens de Consulta	38
2.3.1. RQL	39
2.3.2. Comparação com outras linguagens de consulta	40
2.4. Arquiteturas de Implementação	40
2.4.1. ICS-FORTH	40
2.4.2. Sesame	41
2.4.3. SeBOR	41
2.4.4. Comparação com outras Arquiteturas de Implementação para RDF(S)	42
2.5. Description Logics	42
2.6. Facetas	44
2.7. Projeto de Aplicações Hipermídia e Aplicações Web	45
2.7.1. Métodos para Projeto de Aplicações Hipermídia e Aplicações Web	46
2.7.2. O Método OOHDM	47
3 O Método SHDM	53
3.1. Projeto Conceitual SHDM resumido	54
3.2. Projeto Navegacional SHDM resumido	56

3.3. Comentários Adicionais	59
3.4. Comparação entre OOHDM e SHDM	60
4 O Projeto Conceitual SHDM	62
4.1. Esquema Conceitual	62
4.1.1. Subclasse	63
4.1.2. Subrelacionamento	64
4.1.3. Multiplicidade de Atributo	66
4.1.4. Tipos de Dados utilizando XML Schema	67
4.1.5. Enumeração de Atributo	68
4.1.6. Classe Inferida	68
4.1.7. Estereótipo "ArbitraryClassHierarchy"	70
4.1.8. Relacionamento Inverso	71
4.2. Exemplo resumido da Ontologia Conceitual	72
4.3. Instâncias	73
5 O Projeto Navegacional SHDM	74
5.1. Esquema de Classes Navegacionais	77
5.1.1. Classe Navegacional ou Nó	77
5.1.2. Subrelacionamento Navegacional	78
5.2. Esquema de Contextos Navegacionais	80
5.2.1. Estrutura de Acesso	81
5.2.2. Contexto Navegacional	82
5.2.3. Estrutura de Acesso Facetada	83
5.2.4. Cartão de Especificação de Estrutura de Acesso Facetada	85
5.2.5. Contexto Navegacional Facetado	88
5.2.6. Outros Cartões de Especificação (Contexto, Contexto Facetado e	
Estrutura de Acesso)	89
5.3. Comparação entre Esquema de Contextos Navegacionais	
SHDM e OOHDM	90
6 Arquitetura de Implementação	99
6.1. Visão Geral da Arquitetura de Implementação	99
6.2. Implementação Atual	102
6.3. Experimento Realizado	104
7 Conclusões	106
7.1. Trabalhos Relacionados	106

7.2. Contribuições	107
7.3. Trabalhos Futuros	108
Referências Bibliográficas	110
Apêndice	117
A.1 Ontologia de Artes	117
A.2 Ontologia de Vinhos	121
Anexos	127

Lista de Abreviaturas e Siglas

DAML	DAML DARPA Agent Markup Language
DL	Description Logics
DTD	Data Type Definition
HTML	HyperText Markup Language
OIL	Ontology Inference Layer
ооном	Object Oriented Hypermedia Design Method
OWL	Web Ontology Language
RDF	Resource Description Framework
RDF(S)	Resource Description Framework Schema
RDQL	RDF Data Query Language
RQL	RDF Query Language
SHDM	Semantic Hypermedia Design Method
URI	Universal Resource Identifier
URL	Uniform Resource Locator
W3C	World Wide Web Consortium
Web	World Wide Web
www	World Wide Web
XML	eXtensible Markup Language
XML Schema	eXtensible Markup Schema Language
1	

Lista de figuras

Figura 1 – Exemplo RDF em representação gráfica de grafo	28
Figura 2 – Exemplo RDF em formato serializado RDF/XML	28
Figura 3 – Exemplo de um esquema RDF(S) [Gil & Ratnakar, 2001]	29
Figura 4 – Exemplo de DAML+OIL [Gil & Ratnakar, 2001]	33
Figura 5 - Cartão de contexto ou grupo de contexto	51
Figura 6 - Cartão de Estrutura de Acesso	51
Figura 7 - Cartão de Estrutura de Acesso hierárquica	52
Figura 8. Modelos SHDM em camadas	53
Figura 9 - Notação de subclasse (como na UML)	63
Figura 10 - Exemplo de subclasse	64
Figura 11 - Notação de Subrelacionamento	64
Figura 12 - Exemplo de Subrelacionamento	65
Figura 13 - Exemplo de Multiplicidade de Atributo	66
Figura 14 - Exemplo de Tipos de Dados utilizando XML Schema	67
Figura 15 - Exemplo de Enumeração de Atributo	68
Figura 16 - Exemplo de Classe Inferida	69
Figura 17 - Exemplo de hierarquia de profundidade arbitrária	71
Figura 18 - Notação de Relacionamento Inverso	72
Figura 19 - Exemplo de Relacionamento Inverso	72
Figura 20 – Trecho da Ontologia Conceitual de Artes	73
Figura 21 – Trecho das instâncias da Ontologia Conceitual de Artes	73
Figura 22 - Exemplo de facetas	76
Figura 23 - Exemplo de Classe Navegacional ou Nó	78
Figura 24 - Exemplo de Subrelacionamento Navegacional	79
Figura 25 - Exemplo de Estrutura de Acesso	81
Figura 26 - Exemplo de Contexto Navegacional	82
Figura 27 - Exemplo de Estrutura de Acesso Facetada	84
Figura 28 - Exemplo de Cartão de Especificação de Estrutura de	Acesso
Facetada	86
Figura 29 – Exemplo RDF/XML de especificação da estrutura de uma	faceta.
	88
Figura 30 - Exemplo de Contexto Navegacional Facetado	89

Figura 31 – Esquema de Contextos Navegacionais SHDM da Ontologia de
Artes90
Figura 32 - Esquema de Contextos Navegacionais OOHDM da Ontologia de
Artes91
Figura 33 – Esquema de Contextos Navegacionais SHDM92
Figura 34 - Esquema de Contextos Navegacionais OOHDM92
Figura 35 - Vocabulário de navegação do SHDM97
Figura 36 - Meta esquema do SHDM98
Figura 37 – Arquitetura de implementação para os artefatos SHDM100
Figura 38 - Ambiente de armazenamento, inferência e consulta101
Figura 39 - Arquitetura Sesame com OMM e BOR [Kiryakov et al., 2002a e
2002b]103
Figura 40 – Esboço de template para Contexto de Artefato Alfabético104
Figura 41 – Instância do template para a implementação da ontologia de artes
Figura 42 - Esquema de Classes Conceituais da ontologia de artes117
Figura 43 - Esquema de Classes Navegacionais da ontologia de Artes118
Figura 44 - Esquema de Contextos da ontologia de artes119
Figura 45 - Cartão de Estrutura de Acesso119
Figura 46 – Cartão de Contexto120
Figura 47 – Classe Conceitual Wine com enumeração de atributos121
Figura 48 - Esquema de Classes Conceituais da ontologia de vinhos
(preliminar)122
Figura 49 - Esquema de Classes Conceituais da ontologia de vinhos (final) 122
Figura 50 - Esquema de Classes Navegacionais da ontologia de vinhos123
Figura 51 – Esquema de Contextos Navegacionais do domínio de vinhos125

Lista de tabelas

Tabela 1 - A Evolução da Web [TopQuadrant 2003]	18
Tabela 2- Comparação resumida da funcionalidade das linguagens X	ML DTD,
XML Schema, RDF(S), DAML+OIL e OWL	34
Tabela 3 - Resumo da comparação entre as linguagens XML	Schema,
RDF(S) e DAML+OIL [Gil&Ratnakar2002]	38
Tabela 4 - Exemplos de Consultas RQL	40
Tabela 5 - Etapas SHDM e seus Artefatos	54
Tabela 6 – Resumo de Comparação entre UML x DAML+OIL	60
Tabela 7 – Exemplos de Consultas RQL para o domínio de vinhos	124
Tabela 8 - Comparação entre Ferramentas/Ambientes para Armazena	amento e
Consulta de Ontologias [Magkanaraki et al 2002]	127
Tabela 9-Comparação entre poder expressivo de linguagens de cons	ulta para
RDF(S) [Magkanaraki et al. 2002	128